Journal of Organometallic Chemistry, 78 (1974) 347–355 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

AUSTAUSCHREAKTIONEN AN KOMPLEXGEBUNDENEN LIGANDEN VON ELEMENTEN DER IV. HAUPTGRUPPE

II*. AMINOLYSE VON CYCLOPENTADIENYL-DICARBONYL-TRICHLOR-SILYL-EISEN

MATHIAS HÖFLER, JÜRGEN SCHEUREN und GERT WEBER

Institut für Anorganische Chemie der Universität Köln (Deutschland) (Eingegangen den 22. April 1974)

Summary

The reaction of $CpFe(CO)_2SiCl_3$ with amines in benzene or in pure amine give the complex compounds $CpFe(CO)_2SiCl_{3-x}(NRR')_x$ (R = alkyl, aryl; R' = H, alkyl; x = 1-3), x depending on the basicity of the amine and, far more important, on the steric requirements of the amine. The new compounds are characterized by IR, NMR, and mass spectra.

Zusammenfassung

÷

Die Umsetzung von CpFe(CO)₂SiCl₃ mit Aminen in Benzol bzw. reinem Amin führt zu den Komplexverbindungen CpFe(CO)₂SiCl_{3-x}(NRR')_x (R =Alkyl, Aryl; R' = H, Alkyl; x = 1-3). x hängt dabei hauptsächlich von den sterischen Erfordernissen des Amins und in zweiter Linie von seiner Basizität ab. Die neuen Komplexe werden anhand ihrer IR-, NMR- und Massen-spektren charakterisiert.

Obwohl die Chemie von silicium-organischen Verbindungen mit Si-N-Gruppierungen recht umfangreich ist, existiert unseres Wissens nur ein Übergangsmetallkomplex, der einen derartigen Silylliganden enthält: trans-ClPt(PEt₃)₂-SiH₂NMe₂, das bei der Reaktion von trans-ClPt(PEt₃)₂SiH₂Cl mit Dimethylamin in Form einer zähen Masse anfällt [2]. Sämtliche weiteren bisher veröffentlichten Umsetzungen von Silyl-Übergangsmetallkomplexen mit Aminen führten jedoch nicht zu Aminosilylkomplexen, sondern zu einer Spaltung der Silicium--Übergangsmetallbindung. Mit tertiären Aminen entstehen meist Salze des Typs

* I. Mitteilung vgl. Lit. 1.

 $[R'_{3}Si-NR_{3}]^{*}[ML_{n}]^{-}(R = Alkyl; R' = H, Alkyl; M = Übergangsmetall; L = Li$ gand), nur in einigen Fällen tritt überhaupt keine Reaktion ein. Bei den Reaktionen mit Ammoniak oder sekundären Aminen entsteht ein entsprechendesSalz, oder, was häufiger eintritt, es bilden sich ein Silylamin bzw. ein Silazan undein Hydridokomplex [3], z.B.:

$$2 H_3SiMn(CO)_5 + NH_3 \rightarrow 2HMn(CO)_5 + (SiH_3)_2NH$$
(1)

Zur Darstellung von Aminosilylübergangsmetallkomplexen sollten sich daher nur Übergangsmetallkomplexe mit Silylliganden eignen, bei denen der Ligand besonders fest gebunden ist und bei denen andere leicht austretende Gruppen wie Chlor an das Silicium gebunden sind. Diese Eigenschaften finden sich in CpFe(CO)₂SiCl₃, das sich bereits früher als sehr geeignet zur Untersuchung der Reaktionsweisen der komplexgebundenen SiCl₃-Gruppe erwies [1,4].

Um das Reaktionsverhalten des Siliciums im CpFe(CO)₂SiCl₃-Komplex zu erfassen, wurden zwei Wege eingeschlagen. Zum einem wurden die verschiedenen Amine mit CpFe(CO)₂SiCl₃ unter jeweils möglichst identischen Reaktionsbedingungen umgesetzt, um die Abhängigkeit des Austauschgrades x der Reaktion 2

 $CpFe(CO)_{2}SiCl_{3} + 2 x HNRR' \rightarrow CpFe(CO)_{2}SiCl_{3-x}(NRR')_{x} + x H_{2}NRR'Cl \quad (2)$ (x = 0-3; R = Alkyl, Aryl; R' = H, Alkyl)

vom jeweils eingesetzten Amin zu bestimmen; zum anderen wurde versucht, durch geeignete Wahl der Reaktionsbedingungen neue Komplexe des Typs CpFe-(CO)₂SiCl_{3-x} (NRR')_x (R = Alkyl, Aryl; R' = H, Alkyl; x = 1-3) rein darzustellen.

Um einen Vergleich der einzelnen Umsetzungen miteinander zu ermöglichen, wurden zuerst CpFe(CO)₂SiCl₃ und das betreffende Amin im Molverhältnis 1/30 umgesetzt; die Reaktionsdauer betrug jeweils 6 h, die Temperatur 22°C, die Lösungsmittelmenge Benzol + Amin 50 ml pro g CpFe(CO)₂SiCl₃. Die dabei erzielten Austauschgrade x^{\star} sind in Tabelle 1 aufgeführt. Sie sind bei den primären Aminen mit 0.6–3 grösser als bei den sekundären Aminen mit 0–1.3.

Amin	Dargestellte Verbindung ^a	Substi grad x	tutions-	Reaktions dauer (h)	Reaktions temperatur (°C)	Molver- hëltnis Komplex/ Amin
Dimethylamin	ASiCl(NMe ₂) ₂	2	1.3	14	22	1/30.4
Diäthylamin	ASiCl ₂ NEt ₂	1	1.0	3	22	1/11.3
Di-i-propylamin	ASiCI,	0	0	96	22	1/40
	-	0	0	5	80	1/40
n-Butylamin	ASi(NH-n-C ₄ H ₉) ₃	3	3	6	22	1/30.8
s-Butylamin	ASiCl(NH-s-C_H_)2	2	2	6	22	1/31.3
i-Butylamin	ASi(NH-i-C ₄ H ₉) ₃	3		6	22	1/58
t-Butylamin	ASiCl_NH-t-C_H	1	0.6	24	22	1/149.9
Cyclohexylamin	ASi(NH-cyclo-C _s H ₁₁) ₃	3	2.55	12	22	1/158.1
Anilin	ASiCl(NHPh)2	2		20	50	1/95.8

PRODUKTE UND REAKTIONSBEDINGUNGEN DER REAKTIONEN VON CpFe(CO)₂SiCl₃ MIT AMINEN

^a A = CpFe(CO)₂. ^b Molverhältnis Komplex/Amin = 1/30; Temperatur 22°C; Reaktionsdauer 6 h.

TABELLE 1

Obwohl mit Anilin der entsprechende x^{\star} -Wert nicht bestimmt werden konnte, zeigt ein Vergleich der maximal erreichbaren Substitutionsgrade x von Cyclohexylamin (x = 3) und Anilin (x = 2), dass der Austausch auch von der Basizität der Amine beeinflusst wird. Bei den Umsetzungen der Silylkomplexe mit Aminen ist der sterische Einfluss demnach im allgemeinen dominierend. Basizitätseffekte machen sich qualitativ nur dann bemerkbar, wenn bei etwa gleichem Raumbedarf des Amins sehr grosse Basizitätsunterschiede bestehen.

Entsprechende Ergebnisse wurden bei der Umsetzung von n- $C_3H_7SiCl_3$ mit Aminen erhalten [5]. So werden zum Beispiel bei der Rekation von n- $C_3H_7SiCl_3$ mit HNMe₂ alle drei Chloratome ausgetauscht, mit HN(cyclo- C_6H_{11})₂ jedoch nur ein Chloratom. Elektronische Effekte spielen auch hier nur eine untergeordnete Rolle und machen sich hauptsächlich in Form kleinerer Reaktionsgeschwindigkeiten bemerkbar.

Der Cl—NR₂-Austausch an Alkylchlorsilanen verläuft normalerweise nach einem S_N 2-Mechanismus. Auf Grund des Austauschverhaltens der Komplexe nehmen wir an, dass auch die hier durchgeführten Umsetzungen nach einem S_N 2-Mechanismus ablaufen.

Bei den Versuchen, die Komplexe rein darzustellen, wurde bald deutlich, dass sie im Vergleich zu anderen Komplexen des Typs $CpFe(CO)_2SiX_3$ (X = Chlor, Fluor, Alkoxy, Alkyl) recht instabil sind. Daher musste bei ihrer Darstellung unter möglichst schonenden Bedingungen gearbeitet werden. Insbesondere mussten die Reaktionen bei tiefen Temperaturen durchgeführt werden.

Es erwies sich als günstig, mit einem grossen Überschuss an Amin zu arbeiten. Zum Teil wurden die Umsetzungen in reinem Amin durchgeführt. Die Reaktionsbedingungen enthält Tabelle 1.

Wurde bei den Verbindungen mit einem geringeren Substitutionsgrad als drei die Reaktionsdauer wesentlich über die in Tabelle 1 angegebene Zeit hinaus verlängert, so konnte anhand von IR-Spektren weiterer Austausch nachgewiesen werden. Die Reaktionen führten jedoch stets nur zu Gemischen, ausserdem trat mit längerer. Reaktionsdauer verstärkt Zersetzung ein. Eine Isolierung reiner Produkte mit höherem Austauschgrad gelang bisher infolge ihrer starken Zersetzlichkeit nicht. Mehrere Umsetzungen von CpFe(CO)₂SiCl₃ mit Ammoniak unter verschiedenen Bedingungen führten je nach Reaktionsdauer zu unterschiedlich substitutierten Verbindungen, die jedoch aus denselben Gründen nicht rein erhalten werden konnten. Dagegen wurde in einer Lösung von CpFe(CO)₂SiCl₃ in reinem Triäthylamin auch nach 20 h bei Raumtemperatur keinerlei Reaktion beobachtet.

Die dargestellten Aminosilyl- und Chloraminosilyl-komplexe sind hellgelb bis schwach bräunlich. Sie lösen sich leicht in unpolaren und polaren Lösungsmitteln. Selbst die reinen Verbindungen zersetzen sich schon bei Raumtemperatur unter Stickstoff innerhalb einiger Tage weitgehend. Die Zersetzung in Lösung erfolgt noch schneller. Eine starke Stabilisierung beobachtet man bei Anwesenheit von Ammoniumsalzen. Bei Sublimation bei $30^{\circ}C/0.01$ mm Hg zersetzen sich die Komplexe zu 90% und mehr. Ausnahmen bilden die viel stabileren Verbindungen CpFe(CO)₂SiCl(NHPh)₂ und CpFe(CO)₂SiCl₂NEt₂.

TABELLE 2

CO-VALENZFREQUENZEN DER VERBINDUNGEN CpFe(CO)₂SiCl_{3-x}(NRR')_x^a

Substanz	Gemessen ^C						_
	in Cyclohe:	(an	in KBr		als Fil	m	
CpFe(CO) ₂ SiCl(NMe ₂) ₂	2015	1966 (sh) 1958	1998	1940.			
CpFe(CO) ₂ Si(NMe ₂) ₃	1997	1942					·
CpFe(CO) ₂ SiCl ₂ NEt ₂	2036 (sh)	1982 (sh)	2035 ⁰	1982 ⁰	2027	1973	
	2028	1973	2030 (sh) ^b	1975 ⁶			•
CpFe(CO) ₂ Si(NEt ₂) ₃	2000	1945					÷.,
CpFe(CO),SiCl,N(i-C,H,),			2010	1947			
				1937			
CpFe(CO),Si(NH-n-C,H,),	1995	1937			1991	1931	
CpFe(CO),SiCl(NH-s-C,H,),	2015	1958			2010	1944	1
CpFe(CO),Si(NH-i-C4Ha)	1990	1935			1993	1929	÷
CpFe(CO),SiCl,NH-t-C,H	2035 (sh)	1984 (sh)					1
	2028	1973					
CpFe(CO),Si(NH-t-C,H,),	1988	1934					
CpFe(CO),Si(NH-cyclo-C,H,,),	1992	1936	1986	1918	1992	1932	
CpFe(CO),SiCl(NHPh),	2023	1968	2015	1940			
CpFe(CO),SiCl,	2043	1999	2030	1980			
CpFe(CO) ₂ Si(OMe) ₃ [1]	2011	1952					

^a Die Spektren wurden mit einem Beckman Infrarot Spektralphotometer IR-10 aufgenommen. ^b in Nujol gemessen. ^c alle Banden sehr stark, wenn nicht anders angegeben.

Infrarotspektren

Entsprechend der C_s -Symmetrie der Verbindungen CpFe(CO)₂SiX₃ (Liganden als Punktgruppen) sollte man im IR-Spektrum jeweils zwei CO-Valenzschwingungen erwarten. Diese zwei Absorptionen im ν (CO)-Bereich findet man auch bei den Verbindungen CpFe(CO)₂Si(NRR')₃. Bei den durch nur teilweisen Austausch entstandenen Komplexen CpFe(CO)₂SiCl_{3-x} (NRR')_x (x = 1,2) erscheinen jedoch meist eine oder zwei zusätzliche Banden bzw. Schultern, die zeigen, dass diese Verbindungen als Konformerengemische vorliegen. Derartige Gemische konnten bisher schon bei den Verbindungen CpFe(CO)₂SiClMe₂ [6] und CpFe-(CO)₂SiCl₂Me [7] IR-spektroskopisch nachgewiesen werden, nicht jedoch bei Verbindungen des Typs CpFe(CO)₂SiCl_{3-x} (OR)_x (x = 1,2; R = Alkyl) [1].

Die CO-Valenzschwingungen verschieben sich erwartungsgemäss zu kleineren Wellenzahlen, je geringer die Elektronegativität der an das Silicium gebundenen Gruppen und je grösser der Austauschgrad x der dargestellten Verbindungen ist. Die N-H-Valenzschwingungen der mit primären Aminen erhalten Komplexe liegen bei 3380 cm⁻¹ bis 3400 cm⁻¹.

NMR-Spektren

Die NMR-Spektren der Verbindungen $CpFe(CO)_2SiCl_{3-x}$ (NRR')_x (R = Alkyl, Aryl; R' = H, Alkyl; x = 0-3) zeigen stets ein Singulett für die Cp-Protonen und für die Alkyl- und Aryl-Gruppen die zu erwartenden Aufspaltungsmuster. Die chemische Verschiebung der Cp-Protonen hängt dabei von R, R' und x ab. In der

TABELLE 3

Substanz	Gemessen		
	in $C_6 D_6$	in CDCl ₃	
CpFe(CO),SiCl ₁	4.30	4.84	
CpFe(CO),Si(NH-n-C,H),	4.53		
CpFe(CO),Si(NH-i-C,Ha)	4.54		
CpFe(CO),Si(NH-cyclo-C,H,,)	4.56	4.67	
CpFe(CO) ₂ SiCl(NHPh) ₂		4.78	

CHEMISCHE VERSCHIEBUNGEN δ DER Cp-PROTONEN DER VERBINDUNGEN CpFe(CO)₂SiCl_{3-x} (NRR')_x

Reihe $[CpFe(CO)_3]^+$, $CpFe(CO)_2SiCl_3$ und $[CpFe(CO)(SiCl_3)_2]^-$, in der die Elektronendichte im gesamten Komplex zunimmt, könnte eine zunehmende Abschirmung der Cp-Protonen durch eine Verschiebung zu kleineren δ -Werten nachgewiesen werden [8]. In diese Reihe fügen sich die in CDCl₃ gemessenen Werte der Verbindungen CpFe(CO)_2SiCl₃, CpFe(CO)_2SiCl(NHPh)_2 und CpFe-(CO)_2Si(NH-cyclo-C_6H_{11})_3 gut ein (Tabelle 3).

Bei den in C_6D_6 aufgenommenen Spektren besteht kein entsprechend einfacher Zusammenhang zwischen Elektronendichte und Lage der ¹H-Resonanzen der Cp-Protonen. Ein Vergleich der chemischen Verschiebungen von CpFe(CO)₂-SiCl₃ und CpFe(CO)₂Si(NH-cyclo-C₆H₁₁)₃ in den Lösungsmitteln CDCl₃ und C₆D₆ zeigt jedoch, dass die einzelnen Komplexe verschieden starken Wechselwirkungen mit den Lösungsmitteln unterworfen sind, was zu einer teilweisen Umkehr der erwarteten Reihenfolge führen kann.

Massenspektren

TABELLE 4

Die Massenspektren der Verbindungen CpFe(CO)₂SiCl₂NEt₂ und CpFe(CO)₂-

MASSENSPERTI	ROM VON CPFE(CO)	$_{2}$ SI(NH-1-C ₄ H ₉) ₃ BEI 30 eV		
Massenzahl	Intensität	Bruchstück	•	
421	0.1	CpFe(CO) ₂ Si(NH-i-C ₄ H ₉) ₃ ⁺		
393	4	CpFe(CO)Si(NH-i-C4H9)3 ⁺		
365	2	CpFeSi(NH-i-C ₄ H ₉) ₃ ⁺		
364	1	CpFe(CO) ₂ Si(NH-i-C ₄ H ₉) ₂ (NH) ⁺		
363	1	$CpFe(CO)_{2}Si(NH-i-C_{4}H_{9})_{2}N^{+}$		
349	3	CpFe(CO) ₂ Si(NH-i-C ₄ H ₉) ₂ ⁺		
299	2	FeSi(NH-i-C4Ha)2(N-i-C4Ha)+		
290	1	CpFe(CO) ₂ Si(N-i-C ₄ H ₉)N ⁺		
244	100	Si(NH-i-C ₄ H ₉) ₃ ⁺		
241	2	$Si(N-i-C_4H_9)_3^+$		
172	3	Si(NH-i-C,H,),+		
170	2.5	Si(NH-i-C ₄ H ₉)(NC ₄ H ₈) ⁺		

MASSENSPEKTRUM VON CpFe(CO)₂Si(NH-i-C₄H₉)₃ BEI 30 eV^a

^G Peaks mit einer geringeren Intensität als 1 sowie metastabile Peaks sind nicht aufgeführt. Die angegebenen Massenzahlen beziehen sich auf die Isotope ¹² C, ¹H, ¹⁴N, ¹⁶O, ⁵⁶Fe, ²³Si. Das Spektrum wurde mit einem Atlas CH4-Massenspektrometer aufgenommen.

TABELLE 5

MASSENSPEKT	RUM VON CpFe(CO)	₂ SiCl ₂ N(C ₂ H ₃) ₂ BEI <u>30</u> eV ^a	
Massenzahl	Intensität	Bruchstück	
347	35	CpFe(CO) ₂ SiCl ₂ N(C ₂ H ₃) ₂ ⁺	
332	8	CpFe(CO),SiCl,N(C,H,)(CH,) ⁺	
319	64	CpFe(CO)SiCl,N(C,H,),*	
312	18	CpFe(CO),SiCIN(C,H,),+	
291	100	CpFeSiCl ₁ N(C ₂ H ₂), ⁺	
289	62	CpFe(CO)SiCl ₁ N(C ₁ H ₄) ⁺	
287	5	CpFe(CO)SiCl ₁ N(C,H ₂) ⁺	
275	15	CpFe(CO),SiCl, ⁺	
263	60	CpFeSiCl,NH(C,H,) ⁺	•
261	44	$CpFeSiCl_{2}N(C_{2}H_{4})^{+}$	· · · · · · · · · · · · · · · · · · ·
259	6	CpFeSiCl,N(C,H,) ⁺	
256	6	CpFeSiClN(C ₂ H ₂) ⁺	••
254	5	CpFeSiClN(C,H,)(C,H,) ⁺	- 7
191	42	CpFeSiN(C,H_) ⁺	
170	3	$SiCl_2N(C_2H_3)_2^+$	
163	4	CpFeSiN ⁺	
156	6	CpFeCl ⁺	
149	9	CpFeCO ⁺	
135	3	SiClN(C,H,),+	
100	4	$SiN(C_1H_1)^+$	
86	7	SiN(C,H,)(CH,) ⁺	÷.
73	10	$HN(C_1H_2)^+$	
72	3	$N(C_{2}H_{2})^{+}$	
66	5	C ₅ H ₆ ⁺	

^a Peaks mit einer geringeren Intensität als 1 sowie metastabile Peaks and nicht aufgeführt. Die angegebenen Massenzahlen beziehen sich auf die Isotope ¹²C, ¹H, ¹⁴N, ¹⁶O, ³⁵Cl, ⁵⁶Fe, ²⁸Si. Das Spektrum wurde mit einem Ailas CH4-Massenspektrometer aufgenommen.

SiCl(NHPh)₂ zeigen ein Fragmentierungsmuster, das dem der Verbindungen CpFe-(CO)₂Si(OR)₃ in den Grundzügen ähnlich ist [1]. Auch hier erfolgt zunächst meist die Abspaltung von CO-Gruppen, die oft von den entsprechenden metastabilen Peaks begleitet ist. Diese CO-Abspaltung erfolgt bei allen Komplexen $CpFe(CO)_2SiCl_{3-x}(NRR')_x$ (x = 1-3; R = Alkyl, Aryl; R' = H, Alkyl) sukzessive, nur bei dem Komplex CpFe(CO)₂SiCl(NHPh)₂ lässt sich ausserdem eine gekoppelte Abspaltung der beiden CO-Gruppen nachweisen. Neben bzw. nach der Abspaltung der CO-Gruppen erfolgt die weitere Fragmentierung, wie z.B. die der Silylgruppe unter Verlust von Chlor, Alkylradikalen, Alkanen, Alkenen, Aminradikalen und Aminen. Wenn überhaupt, werden Peaks bei m/e 177 ([CpFe-(CO)₂]⁺), die auf primäre Abspaltung der Silylgruppe schliessen lassen, nur bei hoher Anregungsenergie (70 eV) und mit geringer Intensität beobachtet.

Mit abnehmendem Chlorgehalt, also wachsendem x, der Verbindungen CpFe- $(CO)_2SiCl_{3-x}(NRR')_x$ ändert sich das äussere Erscheinungsbild der Spektren in charakteristischer Weise. Die relative Intensität der Ionen [CpFe(CO)2SiCl3-r- $(NRR')_{x}$]⁺, [CpFe(CO)SiCl_{3-x}(NRR')_x]⁺ und [CpFeSiCl_{3-x}(NRR')_x]⁺ wird immer kleiner, dagegen nimmt die relative Intensität der Ionen [SiCl_{3-r}(NRR'),]* von 0% im Spektrum von CpFe(CO)₂SiCl₃ auf 100% relative Intensität bei CpFe- $(CO)_2Si(NHR)_3$ (R = n-C₄H₉, i-C₄H₉, cyclo-C₆H₁₁) zu. Dies dürfte auf die mit grösser werdendem x abnehmende Stabilität der Eisen-Silicium-Bindung und eine zunehmende Stabilisierung der Ionen [SiCl_{3-x}(NRR'),]^{*} zurückzuführen sein.

Substanz	Ausbeute	Schmelz-	Analyse: Ge	t. (ber.) (%)			
	(m)	(o) wind	υ	н	N	Fe	ថ
CpFe(CO) ₃ SiCl(NMe ₂) ₁	72,44	78-80	40.6 (40.20)	6.5 (6.21)	8.5 (8.52)	17.1 (16.99)	10.6 (10.78)
CpFe(CO) ₃ SICl ₂ NEt ₁	36.52	41-43	37.5 (37.95)	4.6 (4.34)	3.0 (4.02)	16,7 (16.04)	20.0 (20.37)
CpFe(CO) ₃ Si(NH-n-C ₄ H ₉) ₃	82.90		54.05 (54.15)	8.2 (8.37)	9.63 (9.97)	13.34 (13.26)	
CpFe(CO) ₂ SiCl(NH-5C4H9) ₂	77.70	1- 3	46.5 (40.82)	6.5 (6.55)	7.1 (7.28)	14.4 (14.51)	9.2 (9.21)
CpFe(CO) ₇ Si(NH-1-C ₄ H ₆) ₃	60 . 19		63.6 (54.15)	8.05 (8.37)	9.65 (9.97)	13.7 (13.7)	
CpFe(CO),SiCl ₃ NH+C4H ₆	13.54	65-68	(37,95)	(4 ,34)	(4.02)	15.82 (16.04)	20.5 (20.37)
CpFe(CO) ₂ Si(NH-cyclo-C ₆ H ₁₁) ₃	85,79	38-41	60.4 (60.11)	8.5 (8,27)	8.7 (8.41)	10,9 (11.18)	
Cp Fe(CO),SiCi(NHPh),	56,95	110-114	55,5 (53.72)	4.5 (4.03)	7,0 (6,60)	13.0 (13.15)	8.2 (8.34)

ANALYTISCHE DATEN DER VERBINDUNGEN CpFe(CO),SiCI,....,(NRR'),

TABELLE 6

In den Massenspektren der Verbindungen CpFe(CO)₂SiCl₂(NH-t-C₄H₉) und CpFe(CO)₂Si(NH-cyclo-C₆H₁₁)₃ treten die dem Molekülion entsprechenden Massenpeaks nicht auf; diese Verkindungen konnten jedoch anhand ihrer Abbauprodukte [CpFe(CO)SiCl₂(NH-t-C₄H₉)]^{*} (m/e 319), [CpFeSiCl₂(NH-t-C₄H₉)]^{*} (m/e 291) bzw. [CpFeSi(NH-cyclo-C₆H₁₁)₃]^{*} (m/e 443) eindeutig identifiziert werden. Die Verbindung CpFe(CO)₂SiCl₂(NH-t-C₄H₉) zersetzt sich im Massenspektrometer weitgehend, wobei sich unter anderem CoFe(CO)₂SiCl₃ bildet.

In den Spektren der chlorhaltigen Verbindungen ist stets die Bildung des Umlagerungsproduktes [CpFeCl]⁺ zu beobachten. Die Alkylaminosilylkomplexe zeigen dagegen allgemein nur eine sehr geringe Tendenz zur Umlagerung unter Bildung von Bruchstücken [CpFeNRR']⁺. Eine Ausnahme bildet hier jedoch das Ion [CpFeNHPh]⁺ (m/e 213), das im Massenspektrum von CpFe(CO)₂SiCl(NHPh) (30 eV) mit einer relativen Intensität von 14% erscheint. Bei diesem Ion stehen zwei Bindungsmöglichkeiten zur Diskussion. Zum einen kann die Bindung der NHPh-Gruppe an das Eisen über den Stickstoff, zum anderen über den Phenylring erfolgen. Die Umlagerung zu einem Sandwich-Komplex [CpFeNHPh]⁺ würde auch die grosse Bildungstendenz erklären.

Experimenteller Teil

Alle Arbeiten erfolgten unter Stickstoff bei strengem Feuchtigkeitausschluss.

Allgemeine Vorschrift zur Darstellung der Aminosilylkomplexe

Je 2 g CpFe(CO)₂SiCl₃ (6.42 mMol) werden entweder in Benzol gelöst und mit dem entsprechenden Amin (Dimethylamin, Diäthylamin, n-, s-, i-Butylamin, Anilin) vermischt oder in reinem Amin (t-Butylamin, Cyclohexylamin) gelöst, Molverhältnisse Komplex/Amin s. Tabelle 1. Die Lösungen werden bei Raumtemperatur über den angegebenen Zeitraum im Dunkeln gerührt. Anschliessend wird das Lösungsmittel und/oder das überschüssige Amin abgezogen. Der trockene Rückstand wird in n-Pentan aufgenommen und durch eine Fritte filtriert, die mit einer 5 mm dicken Schicht von Al_2O_3 bedeckt ist. Die Lösung wird sofort auf -60°C abgekühlt; das Pentan wird bei dieser Temperatur im Hochvakuum abgezogen. Das erhaltene Austauschprodukt wird noch 2 h bei Raumtemperatur im Hochvakuum getrocknet.

Eine weitergehende Reinigung erfolgt bei der Verbindung CpFe(CO)₂SiCl₂-NEt₂ durch Chromatographie mit einem Äther—Pentan-Gemisch (1/5) an Al₂O₃, bei CpFe(CO)₂SiCl₂NH-t-C₄H₉ durch zweimaliges Umkristallisieren bei -80° C aus Pentan und anschliessende Sublimation bei 40°C, 10⁻⁴ mm Hg, und bei CpFe-(CO)₂SiCl(NHPh)₂ durch Waschen mit wenig Benzol.

Die Ausbeuten und Schmelzpunkte sind in Tabelle 6 angegeben.

Dank

Herrn. Prof. Dr. Th. Kruck danken wir für das stete Interesse an dieser Arbeit und die grosszügige Unterstützung mit Institutsmitteln. Für die Aufnahme der Spektren danken wir den Herren Dipl.-Chem. A. Breuer und Dipl.-Chem. H. Vilter.

Literatur

- 1 M. Höfler und J. Scheuren, J. Organometal. Chem., 55 (1973) 177.
- 2 J.E. Bentham, S. Cradock und E.A.V. Ebsworth, J. Chem. Soc. A, (1971) 587.
- 3 B.J. Aylett und J.M. Campbell, Inorg. Nucl. Chem. Lett., 3 (1967) 137.
- 4 A.G. MacDiarmid, Y.L. Baay, J.F. Bald, Jr., A.D. Berry, S.K. Gondal, A.P. Hagen, M.A. Nasta, F.E. Saalfeld und M.V. McDowell, Pure Appl. Chem., 19 (1969) 431.
- 5 L. Tansjö, Acta Chem. Scand., 11 (1957) 1613.
- 6 R.B. King, K.H. Pannell, C.R. Benett und M. Ishaq, J. Organometal. Chem., 19 (1969) 327.
- 7 W. Jetz und W.A.G. Graham, J. Amer. Chem. Soc., 89 (1967) 2773.
- 8 W. Jetz und W.A.G. Graham, Inorg. Chem., 10 (1971) 1159.